

Tight Security

Dennis Hofheinz (KIT, Karlsruhe)

Motivation
● Real-world systems are multi-user, multi-use:

● Many instances of cryptographic building blocks used
– For encryption schemes: many users (public keys), many ciphertexts

● Axiom: security means all instances secure

Motivation
● Example encryption schemes: we would want/expect

„Only way to break scheme in many-instance scenario is to factor 2000-bit number“

● What we currently have (for most existing systems):

„Only way break scheme in N-instance scenario is to factor (2000-f(N))-bit number“

(here, f(N) is somewhere in between O(log(N)) and O(N))

● Þ Need to know scenario size for bitlength recommendation!

Motivation
„Only way break scheme in n-instance scenario is to factor (2000-f(n))-bit number“

● Why is that so? (Why is it hard to get what we want?)
– Maybe sometimes, attacks work better with many possible targets

– Imagine a system in which each instance is just „bad“ with probability p
(many instances Þ larger probability that one bad instance exists)

● „Social“ reason:
– Easier to analyze 1-instance scenario

– 1-instance security asymptotically implies n-instance scenario (loss n)

Game hops

● Closer look: technical difficulty in many-instance case
– Typically, we proceed in game hops

– Start with scheme in real scenario and under (hypothetical) attack

– Slightly modify setting, argue that attacker will not notice (→reduction)

– Continue to do so until attacker trivially cannot break the overall scheme

– Typically, each step „costs“ a reduction (and causes security loss)

● Difficulty: keep number of steps/reductions low (constant)
– Substitute many challenges given to attacker in few steps

ASEnc(secrets) ASEnc(secrets') … ASEnc(random)

(vector of) challenges

For this talk:

cryptographic scheme tightly secure (under some assumption X)
Û

security guarantees (given X) do not vanish in #instances
Û

loss of security reduction to X does not depend on #instances

Signature schemes

● Signature scheme (Gen,Sign,Ver) consists of 3 algorithms:

– Gen(1k) generates a keypair (vk,sk)

– Sign(sk,M) computes a signature s for a message M

– Ver(vk,s,M) verifies whether a signature s is valid for M

● Correctness: Ver(vk, Sig(sk, M), M) = 1 always

Technical goal: EUF-CMA

● Existential unforgeability under chosen-message attacks:

● Security Û Pr[Ver(vk,M*,s*) = 1 and M* fresh] negl. " PPT A

● Scheme GS-compatible → many-instance encryption/signatures

ExpA
vk

M
1

s
1

M
q

s
q

…

(M*,s*)

(vk,sk) ← Gen(1k)
s

i
 ← Sign(sk,M

i
)

Chen-Wee (Crypto 13)

● [CW13]-signatures for M = (m
1
, …, m

n
) are of the form

where X is part of the secret key, and (h
0
, h

1,0
, h

1,1
, …, h

n,0
, h

n,1
)

chosen freshly from joint public distribution

● Strategy/goal of security proof:

– Modify signatures given to A and accepted from A as valid:

– RF random function → A's chance to find valid forgery negl.

(h
0
, X·∏ h

i,mi
)

(h
0
, RF(M)·∏ h

i,mi
)

Chen-Wee security proof

● [CW13]-proof gradually modifies definition of valid signatures:

● … ok, but what is that „magic“ step there?

same as

magic

magic…

magic

same as

n steps

(h
0
, X·∏ h

i,mi
) (h

0
, RF(ε)·∏ h

i,mi
)

(h
0
, RF(m

1
)·∏ h

i,mi
)

(h
0
, RF(m

1
m

2
)·∏ h

i,mi
)

(h
0
, RF(m

1
···m

n
)·∏ h

i,mi
)

(h
0
, RF(M)·∏ h

i,mi
)

Chen-Wee high-level strategy

● Single hybrid step in [CW13]-proof:

● How to get there in four easy steps:

1) Partition message space according to m
j
:

M
1

M
2M

3

M
4

M
5

M
6

m
j
=b

m
j
=1-b

M*

(h
0
, RF(m

1
···m

j-1
)·∏ h

i,mi
) (h

0
, RF(m

1
···m

j
)·∏ h

i,mi
)

(h
0
, RF(m

1
···m

j-1
)·∏ h

i,mi
)

Chen-Wee high-level strategy

● Single hybrid step in [CW13]-proof:

● How to get there in four easy steps:

1) Partition message space according to m
j
:

2) Embed comp. challenge (only) into all h
i,b

 for same random b

M
1

M
2M

3

M
4

M
5

M
6

m
j
=b

m
j
=1-b

M*
freshly random,
but only for m

j
=b

(h
0
, RF(m

1
···m

j-1
)·∏ h

i,mi
) (h

0
, RF(m

1
···m

j
)·∏ h

i,mi
)

(h
0
, RF(m

1
···m

j-1
)·Z·∏ h

i,mi
)

Chen-Wee high-level strategy

● Single hybrid step in [CW13]-proof:

● How to get there in four easy steps:

1) Partition message space according to m
j
:

2) Embed comp. challenge (only) into all h
i,b

 for same random b

3) Hope that forgery M* has m
j
=1-b (needed for verification)

M
1

M
2M

3

M
4

M
5

M
6

m
j
=b

m
j
=1-b

M*

M
1

M
2M

3

M
4

M
5

M
6 m

j
=1-b

M*
freshly random,
but only for m

j
=b

(h
0
, RF(m

1
···m

j-1
)·∏ h

i,mi
) (h

0
, RF(m

1
···m

j
)·∏ h

i,mi
)

(h
0
, RF(m

1
···m

j-1
)·Z·∏ h

i,mi
)

Chen-Wee high-level strategy

● Single hybrid step in [CW13]-proof:

● How to get there in four easy steps:

1) Partition message space according to m
j
:

2) Embed comp. challenge (only) into all h
i,b

 for same random b

3) Hope that forgery M* has m
j
=1-b (needed for verification)

4) Effect: added dependency on m
j
 in RF

M
1

M
2M

3

M
4

M
5

M
6

m
j
=b

m
j
=1-b

M*

M
1

M
2M

3

M
4

M
5

M
6 m

j
=1-b

M*

(h
0
, RF(m

1
···m

j-1
)·∏ h

i,mi
) (h

0
, RF(m

1
···m

j
)·∏ h

i,mi
)

(h
0
, RF(m

1
···m

j
)·∏ h

i,mi
)

Chen-Wee high-level strategy

● [CW13] require n = secpar hybrid steps → reduction loss is O(n)

● In each step, the message space is partitioned:

● Each of these partitions is prepared for in signature already:

● Consequence: O(n)-sized public pars (that define h
i,b

-dist.)

● Note: similar techniques exist in PRF context [NR97]

M
1

M
2M

3

M
4

M
5

M
6

m
j
=b

m
j
=1-b

M*

(h
0
, X·∏ h

i,mi
)

Variant: algebraic partitioning

● [H16]: implement [CW13] strategy with different partitioning

● Specifically: think of „more algebraic“ partitioning of messages
– Intuition: more algebraic partitioning → partitioning can be „hidden“

– Hope: not all partitionings used in proof have to be present in scheme

● So we're looking for a predicate P on messages such that…
– P(M) = 1 for about half of all M

– P itself is Groth-Sahai-compatible

– Actually, we need many P that, taken
together, uniquely identify a message M M

1

M
2M

3

M
4

M
5

M
6

P(M)=1

P(M)=0

M*

Variant: algebraic partitioning

● Predicate P: Quadratic residuosity (modulo group order!)
– Work in DDH group G of prime order p

– Messages are Z
p
-elements (i.e., exponents)

– Define P as P(M) = 1 Û M Î QR
p
 Û $ r¹0 with r2 = M mod p

● Problem: provides only one partitioning of message space

● Solution: randomize P: set P(M) = 1 Û f(M) Î QR
p
 for affine f

M
1

M
2M

3

M
4

M
5

M
6

M Î QR
p

M*

M Ï QR
p

Corresponding signature scheme

● The verification key is vk = (CRS, pk, Com(f), Com(X))

● Signatures in „algebraic partitioning“ scheme are of the form:

● π
1
 GS-NIZK for „know plaintext of C or f(M) Î QR

p
“

● π
2
 GS-NIZK for „C encrypts X“ (simulated in proof, but not sim.-snd.)

● Proof gradually transforms signatures into:

(C:=Enc
pk

(X), π
1
, π

2
)

(C:=Enc
pk

(RF(M)), π
1
, π

2
)

Variant: adaptive partitioning

● [H17,AHNOP17]: partition adaptively (i.e., predicate fixed in sig)
– Essentially, P(σ) bit encrypted in σ

– Advantage: compact signatures/keys, no quadratic Z
p
-equations

– Disadvantage: switching the partitioning more complicated
● During most of proof, necessary to decrypt P(σ*) to judge σ*
● But: when switching partitioning, should not be able to decrypt P(σ)
● Solution:

 (1) gradually randomize X→ F(M) in issued signatures, but

 (2) accept any X* that is a reused X=F(M) for an old M

 (3) use one-time sig. with key X

σ
1

σ
2σ

3

σ
4

σ
5

σ
6

P(σ)=1

P(σ)=0

σ*

Encryption?

● These techniques also yield encryption schemes:
– [CW13] actually IBE (variants lead to tightly IND-CCA secure PKE)

– [H16,H17,GHK17] contain tightly IND-CCA secure PKE schemes

● Similar dilemma:
– Security reduction needs to decrypt queries from adversary…

– … but should be able to randomize many challenge ciphertexts

→ partition set of ciphertexts (not set of messages)

● Added difficulty: many decryptable, many non-decryptable C!
– Solution: signatures/MACs → (DV-)NIZKs → Naor-Yung PKE

Related work

● So far, focus on Chen-Wee and own works, many others exist
– PKE: [BBM00,HJ12,AKDNO13,LJYP14,GHKW16]

– Sigs: [CMJ07,BKP14,LJYP14,S15,BKKP15,AHNOP17,GHKP18]

– … and many more: (H)IBE, NIKE, AKE, NIZK, PRFs, …

● Surprisingly, similar technical problems/gadgets
– Central: re-randomizability of DH-like assumptions

● (Largely) open: What about lattices?
– … or adaptive corruptions?

– … or other notion of scalability/tightness (e.g., memory)?

Last slide

Thanks for your attention!

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21

