Tight Security

Dennis Hofheinz (KIT, Karlsruhe)

Motivation

• Real-world systems are multi-user, multi-use:

Many instances of cryptographic building blocks used

- For encryption schemes: many users (public keys), many ciphertexts
- Axiom: security means **all** instances secure

Motivation

• Example encryption schemes: we would want/expect

"Only way to break scheme in many-instance scenario is to factor 2000-bit number"

• What we currently have (for most existing systems):

"**Only** way break scheme in N-instance scenario is to factor (2000-f(N))-bit number" (here, f(N) is somewhere in between O(log(N)) and O(N))

• \Rightarrow Need to know scenario size for bitlength recommendation!

Motivation

"Only way break scheme in n-instance scenario is to factor (2000-f(n))-bit number"

- Why is that so? (Why is it hard to get what we want?)
 - Maybe sometimes, attacks work better with many possible targets
 - Imagine a system in which each instance is just "bad" with probability p (many instances ⇒ larger probability that one bad instance exists)
- "Social" reason:
 - Easier to analyze 1-instance scenario
 - 1-instance security asymptotically implies n-instance scenario (loss n)

Game hops

Closer look: technical difficulty in many-instance case

- Typically, we proceed in game hops

Enc(se

For this talk:

Star cryptographic scheme tightly secure (under some assumption X)
 Slig security guarantees (given X) do not vanish in #instances
 Con loss of security reduction to X does not depend on #instances

c(rando

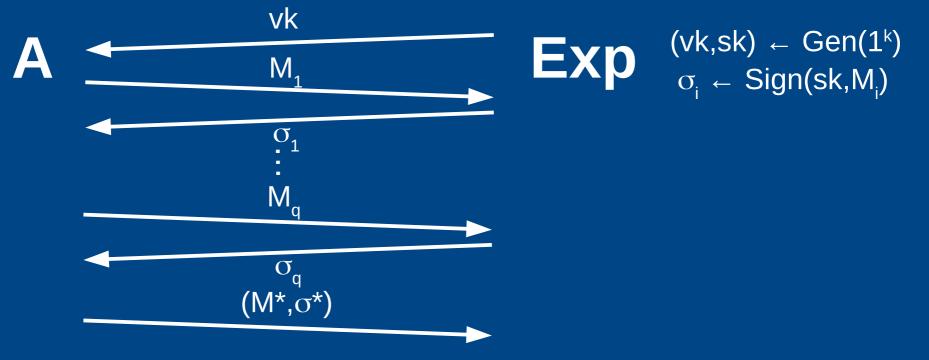
- Typically, each slep "cosis" a reduction (and causes security loss)
- Difficulty: keep number of steps/reductions low (constant)
 - Substitute many challenges given to attacker in few steps

Signature schemes

- Signature scheme (Gen, Sign, Ver) consists of 3 algorithms:
 - Gen(1^k) generates a keypair (vk,sk)
 - Sign(sk,M) computes a signature σ for a message M
 - Ver(vk, σ ,M) verifies whether a signature σ is valid for M
- Correctness: Ver(vk, Sig(sk, M), M) = 1 always

Technical goal: EUF-CMA

Existential unforgeability under chosen-message attacks:



- Security \Leftrightarrow Pr[Ver(vk,M*,\sigma*) = 1 and M* fresh] negl. \forall PPT A
- Scheme GS-compatible → many-instance encryption/signatures

Chen-Wee (Crypto 13)

• [CW13]-signatures for M = (m₁, ..., m_n) are of the form ($h_0, X \cdot \prod h_{i,mi}$)

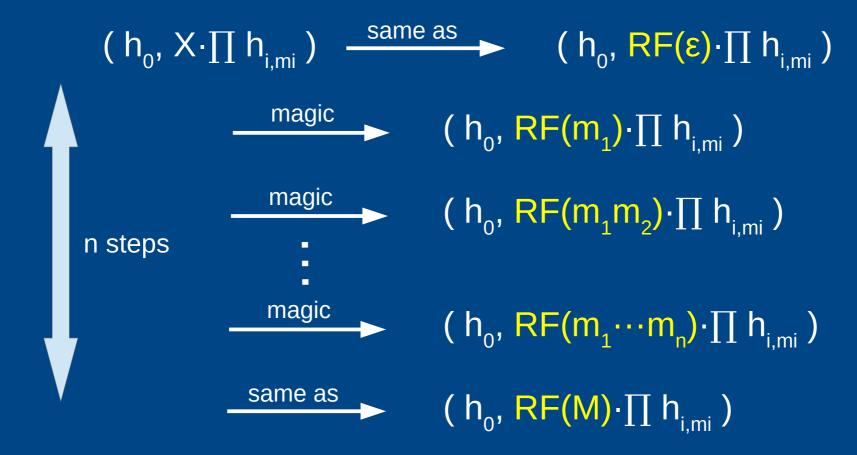
where X is part of the secret key, and $(h_0, h_{1,0}, h_{1,1}, ..., h_{n,0}, h_{n,1})$ chosen freshly from joint public distribution

- Strategy/goal of security proof:
 - Modify signatures given to **A** and accepted from **A** as valid: (h_0 , RF(M)· $\prod h_{i,mi}$)

- RF random function \rightarrow **A**'s chance to find valid forgery negl.

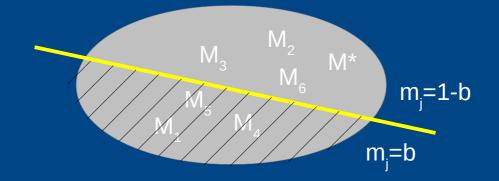
Chen-Wee security proof

• [CW13]-proof gradually modifies definition of valid signatures:



• ... ok, but what is that "magic" step there?

Single hybrid step in [CW13]-proof: (h₀, RF(m₁···m_{j-1})·∏ h_{i,mi}) → (h₀, RF(m₁···m_j)·∏ h_{i,mi})
How to get there in four easy steps: (h₀, RF(m₁···m_{j-1})·∏ h_{i,mi})
1) Partition message space according to m_i:



Single hybrid step in [CW13]-proof: (h₀, RF(m₁···m_{j-1})·∏ h_{i,mi}) → (h₀, RF(m₁···m_j)·∏ h_{i,mi})
How to get there in four easy steps: (h₀, RF(m₁···m_{j-1})·Z·∏ h_{i,mi})
1) Partition message space according to m_j:

freshly random, but only for $m_i = b$

2) Embed comp. challenge (only) into all $h_{i,b}$ for same random b

m_i=1-b

m.=b

Single hybrid step in [CW13]-proof: (h₀, RF(m₁···m_{j-1})·∏ h_{i,mi}) → (h₀, RF(m₁···m_j)·∏ h_{i,mi})
How to get there in four easy steps: (h₀, RF(m₁···m_{j-1})·Z·∏ h_{i,mi})
1) Partition message space according to m_j:

freshly random, but only for $m_j = b$

2) Embed comp. challenge (only) into all $h_{i,b}$ for same random b 3) Hope that forgery M* has $m_j=1$ -b (needed for verification)

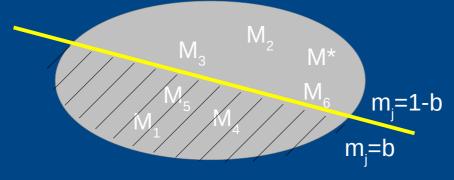
m_i=1-b

Single hybrid step in [CW13]-proof: (h₀, RF(m₁···m_j)·∏ h_{i,mi}) → (h₀, RF(m₁···m_j)·∏ h_{i,mi})
How to get there in four easy steps: (h₀, RF(m₁···m_j)·∏ h_{i,mi})
1) Partition message space according to m_i:

2) Embed comp. challenge (only) into all h_{i,b} for same random b
3) Hope that forgery M* has m_j=1-b (needed for verification)
4) Effect: added dependency on m_j in RF

m_i=1-b

- [CW13] require n = secpar hybrid steps \rightarrow reduction loss is O(n)
- In each step, the message space is partitioned:



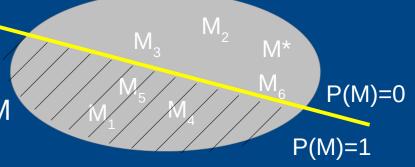
• Each of these partitions is prepared for in signature already:

($h_0^{}$, X· $\prod h_{i,mi}^{}$)

- Consequence: O(n)-sized public pars (that define h_{ib}-dist.)
- Note: similar techniques exist in PRF context [NR97]

Variant: algebraic partitioning

- [H16]: implement [CW13] strategy with different partitioning
- **Specifically:** think of "more algebraic" partitioning of messages
 - Intuition: more algebraic partitioning \rightarrow partitioning can be "hidden"
 - Hope: not all partitionings used in proof have to be present in scheme
- So we're looking for a predicate P on messages such that...
 - P(M) = 1 for about half of all M
 - P itself is Groth-Sahai-compatible
 - Actually, we need many P that, taken together, uniquely identify a message M



Variant: algebraic partitioning

Predicate P: Quadratic residuosity (modulo group order!)

- Work in DDH group G of prime order p
- Messages are Z_{n} -elements (i.e., exponents)
- Define P as $P(M) = 1 \iff M \in \mathbf{QR}_n \iff \exists r \neq 0$ with $r^2 = M \mod p$

$$M_{3} \qquad M_{2} \qquad M^{*} \qquad M \notin QR_{p}$$

$$M_{1} \qquad M_{5} \qquad M_{4} \qquad M_{6} \qquad M \notin QR_{p}$$

$$M \in QR_{p}$$

- **Problem:** provides only one partitioning of message space
- **Solution:** randomize P: set $P(M) = 1 \Leftrightarrow f(M) \in QR_n$ for affine f

Corresponding signature scheme

- The verification key is vk = (CRS, pk, Com(f), Com(X))
- Signatures in "algebraic partitioning" scheme are of the form: (C:=Enc_{pk}(X), π_1 , π_2)
- π_1 GS-NIZK for "know plaintext of C or f(M) $\in QR_p$ "
- π_2 GS-NIZK for "C encrypts X" (simulated in proof, but **not sim.-snd.**)
- Proof gradually transforms signatures into:

(C:=Enc_{pk}(RF(M)), π_1, π_2)

Variant: adaptive partitioning

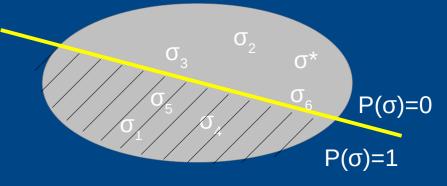
[H17,AHNOP17]: partition adaptively (i.e., predicate fixed in sig)

- Essentially, P(σ) bit encrypted in σ
- Advantage: compact signatures/keys, no quadratic Z_n-equations
- **Disadvantage:** switching the partitioning more complicated
 - During most of proof, necessary to decrypt P(σ^*) to judge σ^*
 - But: when switching partitioning, should not be able to decrypt $P(\sigma)$
 - Solution:

(1) gradually randomize $X \rightarrow F(M)$ in issued signatures, but

(2) accept any X* that is a <u>reused</u> X=F(M) for an old M

(3) use one-time sig. with key X



Encryption?

• These techniques also yield encryption schemes:

- [CW13] actually IBE (variants lead to tightly IND-CCA secure PKE)
- [H16,H17,GHK17] contain tightly IND-CCA secure PKE schemes
- Similar dilemma:
 - Security reduction needs to decrypt queries from adversary...
 - ... but should be able to randomize many challenge ciphertexts
 - \rightarrow partition set of ciphertexts (not set of messages)
- Added difficulty: many decryptable, many non-decryptable C!
 - Solution: signatures/MACs \rightarrow (DV-)NIZKs \rightarrow Naor-Yung PKE

Related work

So far, focus on Chen-Wee and own works, many others exist

- PKE: [BBM00,HJ12,AKDNO13,LJYP14,GHKW16]
- Sigs: [CMJ07,BKP14,LJYP14,S15,BKKP15,AHNOP17,GHKP18]
- ... and many more: (H)IBE, NIKE, AKE, NIZK, PRFs, ...
- Surprisingly, similar technical problems/gadgets
 - Central: re-randomizability of DH-like assumptions
- (Largely) open: What about lattices?
 - ... or adaptive corruptions?
 - ... or other notion of scalability/tightness (e.g., memory)?

Thanks for your attention!