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Motivation

* Real-world systems are multi-user, multi-use:

& = O

"

* Many instances of cryptographic building blocks used

- For encryption schemes: many users (public keys), many ciphertexts

e Axiom: security means all instances secure



Motivation

* Example encryption schemes: we would want/expect

,Only way to break scheme in many-instance scenario is to factor 2000-bit number*

* What we currently have (for most existing systems):

,Only way break scheme in N-instance scenario is to factor (2000-f(N))-bit number*

(here, f(N) is somewhere in between O(log(N)) and O(N))

* = Need to know scenario size for bitlength recommendation!



Motivation

,Only way break scheme in n-instance scenario is to factor (2000-f(n))-bit number*

 Why is that so? (Why is it hard to get what we want?)

- Maybe sometimes, attacks work better with many possible targets

- Imagine a system in which each instance is just ,bad* with probability p
(many instances = larger probability that one bad instance exists)

e Social“ reason:

- Easier to analyze 1-instance scenario

- 1-instance security asymptotically implies n-instance scenario (loss n)



Game hops

* Closer look: techni Iffi l0_many-instance case
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* Difficulty: keep number of steps/reductions low (constant)

- Substitute many challenges given to attacker in few steps



Signature schemes

e Signhature scheme (Gen,Sign,Ver) consists of 3 algorithms:

- Gen(1¥) generates a keypair (vk,sk)
- Sign(sk,M) computes a signature o for a message M

- Ver(vk,o,M) verifies whether a signature o Is valid for M

e Correctness: Ver( vk, Sig( sk, M), M) =1 always



Technical goal: EUF-CMA

» Existential unforgeability under chosen-message attacks:
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* Scheme GS-compatible - many-instance encryption/signatures



Chen-Wee (Crypto 13)

« [CW13]-signatures for M = (m,, ..., m ) are of the form
( ho’ X-11 hi,mi )
where X is part of the secret key, and (h,, h, ., h,,, ..., h . h_ )

1,0’
chosen freshly from joint public distribution

» Strategy/goal of security proof:
- Modify signatures given to A and accepted from A as valid:

(hy, RF(M)-TTh, )
- RF random function — A's chance to find valid forgery negl.



Chen-Wee security proof

* [CW13]-proof gradually modifies definition of valid signatures:

(hy, X-ITh ) =22 5 (h,RF(E)-Th )

me9¢ »  (h, RF(M,)-IIh, )

M9 »  (h, RF(Mm,)-ITh, )

n steps

M9 »  (hy, RF(M,-m)-ITh. )

sameas ( ho, RF(M)-T] h',mi )

* ... 0k, but what is that ,magic” step there?



Chen-Wee high-level strategy

* Single hybrid step in [CW13]-proof:
(hy, RE(M---m.)-ITh, ) > (h,, RE(M---m)-[]

* How to get there in four easy steps: ( h,, RF(m ---m_)-]]

1) Partition message space according to m::
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Chen-Wee high-level strategy

* Single hybrid step in [CW13]-proof:
(h, RE(My---m_ )] h, ;) > (hy, RE(m---m)-[Th, )

I,mi

* How to get there in four easy steps: ( h,, RF(m---m)-[] h, )

1) Partition message space according to m::

2) Embed comp. challenge (only) into aﬂ h,, for same random b
3) Hope that forgery M* has mj—l-b (needed for verification)
4) Effect: added dependency on m, In RF



Chen-Wee high-level strategy

[CW13] require n = secpar hybrid steps — reduction loss is O(n)

In each step, the message space is partitioned:

Each of these partitions Is prepared for in signature already:
( ho’ X-11 hi,mi )

Consequence: O(n)-sized public pars (that define h,  -dist.)

Note: similar techniques exist in PRF context [NR97]



Variant: algebraic partitioning

* [H16]: implement [CW13] strategy with different partitioning

* Specifically: think of ,more algebraic” partitioning of messages

- Intuition: more algebraic partitioning — partitioning can be ,hidden*
— Hope: not all partitionings used in proof have to be present in scheme

* So we're looking for a predicate P on messages such that...

- P(M) = 1 for about half of all M
- P itself is Groth-Sahai-compatible

- Actually, we need many P that, taken

together, uniguely identify a message M P(M)=0

P(M)=1



Variant: algebraic partitioning

* Predicate P: Quadratic residuosity (modulo group order!)

— Work in DDH group G of prime order p
- Messages are Zp-elements (.e., exponents)

- DefinePas PM)=1 < MeQR < 3 r#0 with r> = M mod p

M & QR

MeQRp

* Problem: provides only one partitioning of message space
« Solution: randomize P:setP(M) =1 < (M) € QR for affine f



Corresponding signature scheme

The verification key is vk = ( CRS, pk, Com(f), Com(X) )
Signatures in ,algebraic partitioning* scheme are of the form:
(C::Encpk(X), T, T, )

1, GS-NIZK for ,know plaintext of C or (M) € QR "
T, GS-NIZK for ,C encrypts X* (simulated in proof, but not sim.-snd.)

Proof gradually transforms signatures into:

( C::Encpk(RF(M)), T, T, )



Variant: adaptive partitioning

 [H17,AHNOP17]. partition adaptively (i.e., predicate fixed in sig)

- Essentially, P(o) bit encrypted in o
- Advantage: compact signatures/keys, no quadratic Zp-equations

- Disadvantage: switching the partitioning more complicated

* During most of proof, necessary to decrypt P(c*) to judge o*
e But: when switching partitioning, should not be able to decrypt P(o)
 Solution:

(1) gradually randomize X- F(M) in issued signatures, but

(2) accept any X* that is a reused X=F(M) for an old M

(3) use one-time sig. with key X




Encryption?

* These technigues also yield encryption schemes:

- [CW13] actually IBE (variants lead to tightly IND-CCA secure PKE)
- [H16,H17,GHK17] contain tightly IND-CCA secure PKE schemes

e Similar dilemma:

— Security reduction needs to decrypt queries from adversary...
- ... but should be able to randomize many challenge ciphertexts
— partition set of ciphertexts (not set of messages)

* Added difficulty: many decryptable, many non-decryptable C!
— Solution: signatures/MACs - (DV-)NIZKs - Naor-Yung PKE



Related work

* So far, focus on Chen-Wee and own works, many others exist

- PKE: [BBMO00,HJ12,AKDNO13,LJYP14,GHKW16]
- Sigs: [CMJ07,BKP14,LJYP14,515,BKKP15,AHNOP17,GHKP18]
- ... and many more: (H)IBE, NIKE, AKE, NIZK, PRFs, ...

* Surprisingly, similar technical problems/gadgets

— Central: re-randomizability of DH-like assumptions

* (Largely) open: What about lattices?

— ... or adaptive corruptions?
— ... or other notion of scalability/tightness (e.g., memory)?



Last slide

Thanks for your attention!
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