

Homomorphic Authentication for Computing Securely on Untrusted Machines

Dario Fiore IMDEA Software Institute, Spain

Paris Crypto Day — March 18, 2019

computing on untrusted machines

devices receive information processed on untrusted machines

X

security concerns

integrity. ensuring that results computed by third parties are correct?

- **privacy.** ensuring that no unauthorized information is leaked to the third parties?

computation's integrity. ensuring correctness of computations performed by untrusted machines. Bob must <u>efficiently</u> establish if y=f(x), given f, x, y

computation's authenticity. ensuring correctness of computation and origin of the data used in the computation performed by untrusted machines Bob must efficiently establish if y=f(x) for an x from Alice, given f, y

privacy-preserving computation. enabling untrusted machine to compute f(x) without learning x (+ can also ensure integrity/authenticity)

authentication

homomorphic/ functional/searchable... encryption

roadmap of this talk

•computing on untrusted machines

focus on computation authenticity

homomorphic authentication

concept

state of the art

a simple realization

computation authenticity for multiple data sources conclusions

- security/authenticity. untrusted machine unable to cheat (i.e., sending $y' \neq f(x_1, \ldots, x_n)$ + Bob must get convinced that data from Alice used to obtain y
- efficiency. communication/storage of Bob minimized
- challenge. achieving both security and efficiency
 - how to achieve only efficiency (w/o security)?

main desiderata

$sign(sk, m) \rightarrow s$ ver(pk, m, s) \rightarrow {reject, accept} security/authenticity. Cloud unable to cheat efficiency. communication/storage of Bob minimized

(e.g., sending $y'=f'(x_1, ..., x_n)$, or $y''=f(x'_1, ..., x_n)$)

security & efficiency: homomorphic authentication

- ⇒ communication/storage of Bob minimized

homomorphic authentication

- concept introduced by [Desdmedt93]
- first formalization by [Johnson-Molnar-Song-Wagner02]
- formal definitions by [Boneh-Feeeman-Katz-Waters09] (network coding application)
- first full fledged formalization [Boneh-Freeman II]

homomorphic authenticators (HA)

keygen(I^k) \rightarrow (sk, ek, vk) auth(sk, i, x_i) $\rightarrow \sigma_i$ eval(ek, f, $\sigma_1, \ldots, \sigma_n) \rightarrow \sigma$ **ver**(vk, **f**, y, σ) \rightarrow {reject, accept} correctness (basic idea).

succinctness. there is a universal polynomial p() such that $|\sigma| \leq p(k, \log n)$ security. w/o sk one can only create valid authenticators on legitimate outputs

* deliberately omitting some details of the model for simplicity

 $\{\sigma_i \leftarrow auth(sk, i, x_i)\}$ and $\sigma \leftarrow eval(ek, f, \sigma_1, ..., \sigma_n),$ \Rightarrow ver(vk, f, f(x_1,...,x_n), σ)=accept

unforgeability of homomorphic authenticators (**İ**, X_i) (f, y*, σ*) σi Alice $\sigma_i \leftarrow auth(sk, i, x_i)$

adversary wins if

$y^* \neq f(x_1, ..., x_n)$ AND ver(vk, f, y^*, σ^*)=accept

unforgeability. an HA scheme is unforgeable if any PPT adversary wins this game with negligible probability

def. subtleties. how to define forgeries if some i was never queried? [CFN18] simply say it is a forgery if inputs are missing

additional (interesting) properties of HAs

composability. outputs of eval can be fed back to eval

information about the inputs

useful to parallelize/distribute computation with correctness proofs context-hiding. authenticators on functions outputs do not reveal

roadmap of this talk

Computing on untrusted machines

focus on computation authenticity

homomorphic authentication

concept

state of the art

a simple realization

computation authenticity for multiple data sources conclusions

HA from the origins to state-of-the-art

the concept of homomorphic authentication

- concept introduced by [Desdmedt93]
- first formalization by [Johnson-Molnar-Song-Wagner02]
- formal definitions by [Boneh-Feeeman-Katz-Waters09] (network coding application), [Boneh-Freeman II] (first full-fledged formalization)

two fundamental research directions

- (1) to broaden the class of functionalities that can be computed homomorphically
- (2) to obtain efficient instantiations

linear

linear functions [Boneh-Freeman-Katz-Waters09, Gennaro-Krawczyk-Rabin10, Catalano-F-Libert-Peters-Joye-Yung 13, Catalano-F-Nizzardo 15,] **Iow-degree polynomials** [Boneh-Freeman II, Catalano-F-Warinschil4] arbitrary circuits of bounded depth [Gorbunov-Vaikunthanan-Wichs] arbitrary circuits (fully homomorphic) [OP-I]

- Warinschill, Attrapadung-Libertll, Catalano-F-Warinschil2, Catalano-F-Gennaro-Vamvourellisl3,

Libert-Peters-Joye-Yung 13, Catalano-F-Nizzardo 15,] **Iow-degree polynomials** [Boneh-Freeman II, Catalano-F-Warinschil4] arbitrary circuits of bounded depth [Gorbunov-Vaikunthanan-Wichs] arbitrary circuits (fully homomorphic) [OP-I] fast&expressive HS [OP-2]

- **linear functions** [Boneh-Freeman-Katz-Waters09, Gennaro-Krawczyk-Rabin10, Catalano-F-Warinschill, Attrapadung-Libertll, Catalano-F-Warinschil2, Catalano-F-Gennaro-Vamvourellisl3,

arbitrary circuits [Gennaro-Wichs] (no verification queries supported) **Iow-degree arithmetic circuits (NCI)** [Catalano-FI3, Catalano-F-Nizzardo 4] degree-2 arithmetic circuits [Backes-F-Reischuk] 3, F-Gennaro-Pastro] 4] (new property: efficient verification) efficient FH-MACs [OP-3] / FH MACs secure w/verification queries [OP-4]

class of functions

roadmap of this talk **Computing on untrusted machines**

- focus on computation authenticity
 - homomorphic authentication
 - concept
 - state of the art
 - a simple realization
 - computation authenticity for multiple data sources conclusions

a simple and practical homomorphic MAC [CF13]

inputs. values $X_i \in \mathbb{Z}_p$ computations. arithmetic circuits of low degree over

applications.

computations expressible w/boolean circuits of logarithmic depth (NC¹) arithmetic computations: polynomials, linear algebra, ...

CFI3 homomorphic MAC

keygen() choose the key K of a PRF_K and a secret line $\alpha \in \mathbb{Z}_p$ $sk=(K, \alpha)$

auth(sk, i, x_i) Encode value x; (an integer) with **label/index** i as a **polynomial** $\sigma_i(\mathbf{Z})$ of degree I such that: $\sigma_i(\alpha) = PRF_{K}(i)$ $\sigma_i(\mathbf{0}) = \mathbf{x}_i$

the CFI3 homomorphic MAC

eval(f, $\sigma_1, ..., \sigma_k$) point-wise execution of arithmetic operations $\sigma^*(Z) = f(\sigma_1(Z), ..., \sigma_k(Z))$ addition: addition of coefficients multiplication: convolution of polynomials

ver(sk, f, y, σ*) Check $\sigma^{*}(\alpha) = f(\mathsf{PRF}_{\kappa}(I), ..., \mathsf{PRF}_{\kappa}(k))$ σ*(0

HAs with efficient verification

CFI3 verification requires recomputing f how to verify efficiently? [BFRI3] introduced the model and a first realization basic idea.

this is by now a desired verification model (also in homomorphic signatures)

ver(vk, **f**, y, σ) $ver_{on}(vk_f, y, \sigma) \rightarrow \{reject, accept\}$

roadmap of this talk Computing on untrusted machines focus on computation authenticity homomorphic authentication concept state of the art a simple realization <u>computation authenticity for multiple data sources</u> conclusions

computation authenticity for multiple users

using (single-user) HAs

using (single-user) HAs

main issues.

- establishing origin. not really... all users look the same

fault tolerance. if one users is compromised all system is compromised!

multi-key homomorphic authenticators [F-Mitrokotsa-Nizzardo-Pagnin16]

with different secret keys

some sk_i involved in the computation)

on #users)

- **unforgeability.** untrusted machine cannot cheat (unless it learns
- succinctness. size of σ independent of #inputs (but may depend

multi-key homomorphic authenticators (MK-HA)

setup($|k\rangle \rightarrow pp$ $keygen(pp) \rightarrow (sk_{id}, ek_{id}, vk_{id})$ auth(sk_{id}, (id, i), x) $\rightarrow \sigma_{id,i}$ eval(f, { σ_i , EKS_i}_{i=1..n}) $\rightarrow \sigma$ // each EKS_i = {ek_{id}} $ver(f, \{vk_{id}\}, y, \sigma) \rightarrow \{reject, accept\}$ correctness (basic idea).

succinctness. there is a universal polynomial p(k) such that $|\sigma| \le p(k, n, \log t)$ security. w/o sk of users involved in a computation, one can only create valid authenticators on legitimate outputs

- $\{\sigma_i \leftarrow auth(sk_{idj}, (id_j, i_j), x_i)\}$ and $\sigma \leftarrow eval(f, \{\sigma_i, \{ek_{idj}\}\}_{j=1..n}),$ \Rightarrow ver(f, {vk_{id}}, f(x_1,...,x_n), \sigma)=accept

a look at multi-key HAs state of the art

	[F-Mitrokotsa-Nizzardo-Pagnin16]		[Lai et al. 18]
	MK-HS	MK-HMAC	MK-HS* *stronger security
functions	arbitrary circuits of bounded depth	arithmetic circuits of "low degree"	arbitrary circuits of bounded depth
assumptions	SIS	PRF (OWFs)	SNARKs
succinctness (n=#users, d=deg(f))	O(n)	O(n ^d) or O(d ⁿ)	O(I)

multi-key HA w/better succinctness from std assumptions? [OP-5]

FMNPI6 multi-key homomorphic MAC

keygen() at user j choose the **key** K_j of a **PRF**_{K_j} and a secret line $\alpha_j \in \mathbb{Z}_p$ **sk**_j=(K_j , α_j) auth(sk_j, i, x_i) Encode value x_i (an integer) with label/index *i* as a polynomial $\sigma_i(Z_j)$ of degree 1 such that: $\sigma_i(\alpha_j) = PRF_{K_j}(i)$ $\sigma_i(0) = x_i$

 $\sigma_{i,0} = \mathbf{x}_{i,j} \sigma_{i,j} = (\mathbf{PRF}_{\mathbf{K}j}(i) - \mathbf{x}_{i})/\alpha_{j}$

ver(sk_j, i, x_i, σ_i) Check the "guard" point i.e., recompute PRF_{Kj}(i) and evaluate σ_i on 0 and α_j

roadmap of this talk **Computing on untrusted machines** focus on computation authenticity homomorphic authentication concept state of the art a simple realization computation authenticity for multiple data sources conclusions

Alternative Approaches...

a folklore idea: using SNARKs + digital signatures proves that $R(y, \{x_i, \sigma_i\}) = I$ iff $y = f(x) AND \forall i \sigma_i$ is a valid signature on (i, x_i) l≣Ì SNARK succinctness => HS succinctness knowledge-soundness + unforgeability => HS unforgeability ...but proving security raises very subtle problems related to extractability

C=Com $(x_1, ..., x_n)$ X1,...,Xn

Alice

using commit-and-prove SNARKs + digital signatures

can create proof that y=f(x) w.r.t. C=Com(x) + add signature on commitment C Bob verifies that (C, \clubsuit) is valid signature and that (C, y, \square) valid proof

"Standard" HA constructions vs. alternative approaches

	HA	SNARKs + Signatures	CP-SNARKs + Signatures
efficiency (concrete)	good for linear/ quadratic functions		
assumptions	standard	(oracle) knowledge-type	knowledge-type
public parameters	O(I) (ROM) O(#inputs) (std model)	O(I) ROM O(f) **	O(I) ROM O(f) **
composition	yes	no*	no*
streaming source	yes	no	yes

conclusions

from OWFs

my exciting journey on homomorphic authentication

thanks and credit to all my collaborators too!

M. Backes, M. Barbosa, D. Catalano, R. Gennaro, K. Mitrokotsa, L. Nizzardo, E. Pagnin, V. Pastro, R. Reischuk, B. Warinschi

— Thank you for your attention!

