
Homomorphic Authentication for  
 Computing Securely  

on Untrusted Machines

Dario Fiore IMDEA Software Institute, Spain

Paris Crypto Day — March 18, 2019

�2

computing on untrusted machines

x

security concerns
integrity. ensuring that results computed by third parties are correct?

privacy. ensuring that no unauthorized information is leaked to the third parties?

y

y=f(x)

devices receive information processed on untrusted machines

20142012 2015 2016

selection of security incidents

real

world

main security goals / research problems

computation's integrity. ensuring correctness of computations performed
by untrusted machines. Bob must efficiently establish if y=f(x), given f, x, y

computation’s authenticity. ensuring correctness of computation and
origin of the data used in the computation performed by untrusted machines

Bob must efficiently establish if y=f(x) for an x from Alice, given f, y

privacy-preserving computation. enabling untrusted machine to
compute f(x) without learning x (+ can also ensure integrity/authenticity)

�3

x y

y=f(x)

verifiable
computation

homomorphic/functional/searchable… encryption

homomorphic
authentication

Alice Bob

roadmap of this talk
computing on untrusted machines

focus on computation authenticity

homomorphic authentication

concept

state of the art

a simple realization

computation authenticity for multiple data sources

conclusions

�4

computation’s authenticity

main desiderata
security/authenticity. untrusted machine unable to cheat (i.e., sending
y’≠f(x1, …, xn)) + Bob must get convinced that data from Alice used to obtain y

efficiency. communication/storage of Bob minimized

challenge. achieving both security and efficiency

how to achieve only efficiency (w/o security)?
�5

x1, …, xn y

y=f(x1, …, xn)Alice Bob

a solution with security and without efficiency

using (classical) authentication methods (e.g., digital signatures)
keygen()→(pk, sk)

sign(sk, m)→s

ver(pk, m, s)→{reject, accept}

security/authenticity. Cloud unable to cheat
(e.g., sending y’=f’(x1, …, xn), or y’’=f(x’1, …, xn))

efficiency. communication/storage of Bob minimized

�6

x1, …, xn y

y=f(x1, …, xn)Alice Bob

vksk
x1, …, xn

∀i: (xi,) valid
AND

y=f(x1, …, xn)

security guarantee (unforgeability): w/o
sk not possible to generate a valid signature

security & efficiency: homomorphic authentication

security/authenticity. w/o sk only possible to certify correct
computations results ⇒ Cloud cannot cheat

efficiency. size of authenticators independent of n  
 ⇒ communication/storage of Bob minimized

�7

x1, …, xn y

y=f(x1, …, xn)Alice Bob

vksk

=eval(pk, f, , …,)

ver(vk, f, y,)

homomorphic authentication

concept introduced by [Desdmedt93]

first formalization by [Johnson-Molnar-Song-Wagner02]

formal definitions by [Boneh-Feeeman-Katz-Waters09] (network coding
application)

first full fledged formalization [Boneh-Freeman11]

�8

homomorphic authenticators (HA)
keygen(1k)→(sk, ek, vk)

auth(sk, i, xi)→σi

eval(ek, f, σ1, …, σn)→σ
ver(vk, f, y, σ)→{reject, accept}

correctness (basic idea).
{σi←auth(sk, i, xi)} and σ←eval(ek, f, σ1, …, σn),

⇒ ver(vk, f, f(x1,…,xn), σ)=accept

succinctness. there is a universal polynomial p() such that |σ|≤p(k, log n)

security. w/o sk one can only create valid authenticators on legitimate outputs

* deliberately omitting some details of the model for simplicity

�9

vk
homomorphic MACs

homomorphic signatures

secret

public

unforgeability of homomorphic authenticators

adversary wins if
y*≠f(x1, …, xn) AND ver(vk, f, y*, σ*)=accept

unforgeability. an HA scheme is unforgeable if any PPT adversary wins this game
with negligible probability

def. subtleties. how to define forgeries if some i was never queried?
[CFN18] simply say it is a forgery if inputs are missing

�10

(i, xi)
(f, y*, σ*)

Alice Bob

vksk

σi

σi←auth(sk, i, xi)

ek

additional (interesting) properties of HAs
composability. outputs of eval can be fed back to eval

useful to parallelize/distribute computation with correctness proofs

context-hiding. authenticators on functions outputs do not reveal
information about the inputs

�11

x

x2x1

+

x1∗ x2
x

x22

x

x3

2x2∗ x3

z1+ z2=x2∗(x1+2∗x3)

roadmap of this talk
computing on untrusted machines

focus on computation authenticity

homomorphic authentication

concept

state of the art

a simple realization

computation authenticity for multiple data sources

conclusions

�12

HA from the origins to state-of-the-art
the concept of homomorphic authentication

concept introduced by [Desdmedt93]

first formalization by [Johnson-Molnar-Song-Wagner02]

formal definitions by [Boneh-Feeeman-Katz-Waters09] (network coding application),
[Boneh-Freeman11] (first full-fledged formalization)

two fundamental research directions

(1) to broaden the class of functionalities that can be computed homomorphically

(2) to obtain efficient instantiations

�13

linear functions [Boneh-Freeman-Katz-Waters09, Gennaro-Krawczyk-Rabin10, Catalano-F-
Warinschi11, Attrapadung-Libert11, Catalano-F-Warinschi12, Catalano-F-Gennaro-Vamvourellis13,
Libert-Peters-Joye-Yung13, Catalano-F-Nizzardo15, ……]

low-degree polynomials [Boneh-Freeman11, Catalano-F-Warinschi14]

arbitrary circuits of bounded depth [Gorbunov-Vaikunthanan-Wichs15]

arbitrary circuits (fully homomorphic) [OP-1]

(1) supported functionality (HS)

�14

linear arbitrary
(bounded size)

polynomials
class of  

functions

HS state of  
the art

arbitrary 
(unbounded)

?

?

[OP-1]

linear functions [Boneh-Freeman-Katz-Waters09, Gennaro-Krawczyk-Rabin10, Catalano-F-
Warinschi11, Attrapadung-Libert11, Catalano-F-Warinschi12, Catalano-F-Gennaro-Vamvourellis13,
Libert-Peters-Joye-Yung13, Catalano-F-Nizzardo15, ……]

low-degree polynomials [Boneh-Freeman11, Catalano-F-Warinschi14]

arbitrary circuits of bounded depth [Gorbunov-Vaikunthanan-Wichs15]

arbitrary circuits (fully homomorphic) [OP-1]

(2) efficiency of HS constructions

�15

fast

slow

linear arbitrary
(bounded size)

polynomials

efficiency

class of  
functions

pairing-based

lattice
lattice

trapdoors

HS state of  
the art

arbitrary 
(unbounded)

?

[OP-2] ??

?
fast&expressive HS [OP-2] ?

[OP-1]

arbitrary circuits [Gennaro-Wichs13] (no verification queries supported)

low-degree arithmetic circuits (NC1) [Catalano-F13, Catalano-F-Nizzardo14]

degree-2 arithmetic circuits [Backes-F-Reischuk13, F-Gennaro-Pastro14]

(new property: efficient verification)

efficient FH-MACs [OP-3] / FH MACs secure w/verification queries [OP-4]

functionality&efficiency of Hom. MACs constructions

�16

fast

slow

linear NC1

efficiency

class of  
functions

HMACs
state of  
the art

arbitrary 
(unbounded)

quadratic

pairing-based PRFs!

FHE

[OP-3]

?

?

[OP-4]

? ?

roadmap of this talk
computing on untrusted machines

focus on computation authenticity

homomorphic authentication

concept

state of the art

a simple realization

computation authenticity for multiple data sources

conclusions

�17

a simple and practical homomorphic MAC [CF13]

inputs. values xi

computations. arithmetic circuits of low degree over

applications.
computations expressible w/boolean circuits of logarithmic depth (NC1)
arithmetic computations: polynomials, linear algebra, …

�18

Definition 4 (Decision Linear [13]). Let G be a bilinear group generator, and let bgpp = (p,G,

GT , e, g) R G(1�). Let g0, g1, g2 R G, and r0, r1, r2 R Zp be chosen uniformly at random. We
define the advantage of an adversary A in solving the Decision Linear problem as

Advdlin
A (�) = |Pr[A(bgpp, g0, g1, g2, g

r1
1
, g

r2
2
, g

r1+r2
0

) = 1]�
Pr[A(bgpp, g0, g1, g2, g

r1
1
, g

r2
2
, g

r0
0

) = 1] |

We say that the Decision Linear assumption holds for G if for every PPT algorithm A we have that
Advdlin

A (�) is negligible.

Also, in our proof we will use the following useful Lemma (Lemma 7 in [37]) which basically
shows that the Decision Linear problem is random self-reducible6:

Lemma 1 ([37]). Given g0, g1, g2, g
r1
1
, g

r2
2
, g

r0
0
2 G, one can generate g

r01
1
, g

r02
2
, g

r00
0

such that: (1)
r
0
1
, r

0
2
are uniformly random in Zp, and (2) r

0
0
= r

0
1
+ r

0
2
if r0 = r1 + r2, or r

0
0
is uniformly random

otherwise.

Our pseudorandom function. Here we describe our PRF with amortized closed-form e�ciency:

KG(1�). Let bgpp = (p,G,GT , e, g) be the description of bilinear groups G and GT having the same
prime order p > 2� and such that g 2 G is a generator and e : G ⇥ G ! GT is an e�ciently
computable bilinear map. The key generation chooses two seeds K1,K2 for a family of PRFs
F
0

K1,2
: {0, 1}⇤ ! Z2

p. Finally, it outputs K = (bgpp,K1,K2) and pp = bgpp. The parameters

define a function F with domain X = {0, 1}⇤ ⇥ {0, 1}⇤ and range G, as described below.
FK(x). Let x = (�, ⌧) 2 X be the input value. To compute the corresponding output R 2 G, the

algorithm generates values (u, v) F
0

K1
(⌧) and (a, b) F

0

K2
(�), and then outputs R = g

ua+vb.

We first show that the above function is pseudorandom, and then we will show that it admits
amortized closed-form e�ciency for GroupEval.

Theorem 2. If F0 is a pseudorandom function and the Decision Linear assumption holds for G,
then the function (KG,F) described above is a pseudorandom function.

Proof. The proof follows by a standard hybrid argument based on the following games.

Game 0: this is the pseudorandomness game for the function F.
Game 1: this is Game 0 where the function F

0

K1
is replaced by a random function �1 : {0, 1}⇤ ! Z2

p.
It is easy to see that Game 1 is computationally indistinguishable from Game 0 by the security
of the pseudorandom function F

0.
Game 2: this is Game 1 where the function F

0

K2
is replaced by a random function �2 : {0, 1}⇤ ! Z2

p.
Similarly to the previous case, one can easily argue that Game 2 is computationally indistin-
guishable from Game 1 by the security of the pseudorandom function F

0.
Game (3, j): informally, for j = 0, . . . , Q�, Game (3, j) is a modification of Game 2 in which

the queries (�, ⌧), where � is among the first j distinct values �1, . . . ,�j queried by A, are
answered with randomly chosen outputs. More formally, let Q� be the number of distinct �’s
queried by the adversary A during the experiment. If S = {�1, . . . ,�Q�} is the ordered set of
all such values queried by A, then, for 0  j  Q�, we define the following partitioning sets of

6 Lewko and Waters [37] state this Lemma for the k-Linear problem. We only recall the version for k = 2.

20

+ x x

++

x1 x2 x3

x

CF13 homomorphic MAC

�19

keygen()
choose the key K of a PRFK  
and a secret line α 
sk=(K, α)

σi

α

xi

auth(sk, i, xi)
Encode value xi (an integer)  
with label/index i  
as a polynomial σi(Z)
of degree 1 such that:

σi (0) = xi

σi (α) = PRFK(i)

PRFK(i)

0

ver(sk, i, xi, σi)
Check the “guard” point
i.e., recompute PRFK(i) and
evaluate σi on 0 and α

“guard” point

“value” point

σi,0 = xi , σi,1 =(PRFK(i) - xi)/α

Definition 4 (Decision Linear [13]). Let G be a bilinear group generator, and let bgpp = (p,G,

GT , e, g) R G(1�). Let g0, g1, g2 R G, and r0, r1, r2 R Zp be chosen uniformly at random. We
define the advantage of an adversary A in solving the Decision Linear problem as

Advdlin
A (�) = |Pr[A(bgpp, g0, g1, g2, g

r1
1
, g

r2
2
, g

r1+r2
0

) = 1]�
Pr[A(bgpp, g0, g1, g2, g

r1
1
, g

r2
2
, g

r0
0

) = 1] |

We say that the Decision Linear assumption holds for G if for every PPT algorithm A we have that
Advdlin

A (�) is negligible.

Also, in our proof we will use the following useful Lemma (Lemma 7 in [37]) which basically
shows that the Decision Linear problem is random self-reducible6:

Lemma 1 ([37]). Given g0, g1, g2, g
r1
1
, g

r2
2
, g

r0
0
2 G, one can generate g

r01
1
, g

r02
2
, g

r00
0

such that: (1)
r
0
1
, r

0
2
are uniformly random in Zp, and (2) r

0
0
= r

0
1
+ r

0
2
if r0 = r1 + r2, or r

0
0
is uniformly random

otherwise.

Our pseudorandom function. Here we describe our PRF with amortized closed-form e�ciency:

KG(1�). Let bgpp = (p,G,GT , e, g) be the description of bilinear groups G and GT having the same
prime order p > 2� and such that g 2 G is a generator and e : G ⇥ G ! GT is an e�ciently
computable bilinear map. The key generation chooses two seeds K1,K2 for a family of PRFs
F
0

K1,2
: {0, 1}⇤ ! Z2

p. Finally, it outputs K = (bgpp,K1,K2) and pp = bgpp. The parameters

define a function F with domain X = {0, 1}⇤ ⇥ {0, 1}⇤ and range G, as described below.
FK(x). Let x = (�, ⌧) 2 X be the input value. To compute the corresponding output R 2 G, the

algorithm generates values (u, v) F
0

K1
(⌧) and (a, b) F

0

K2
(�), and then outputs R = g

ua+vb.

We first show that the above function is pseudorandom, and then we will show that it admits
amortized closed-form e�ciency for GroupEval.

Theorem 2. If F0 is a pseudorandom function and the Decision Linear assumption holds for G,
then the function (KG,F) described above is a pseudorandom function.

Proof. The proof follows by a standard hybrid argument based on the following games.

Game 0: this is the pseudorandomness game for the function F.
Game 1: this is Game 0 where the function F

0

K1
is replaced by a random function �1 : {0, 1}⇤ ! Z2

p.
It is easy to see that Game 1 is computationally indistinguishable from Game 0 by the security
of the pseudorandom function F

0.
Game 2: this is Game 1 where the function F

0

K2
is replaced by a random function �2 : {0, 1}⇤ ! Z2

p.
Similarly to the previous case, one can easily argue that Game 2 is computationally indistin-
guishable from Game 1 by the security of the pseudorandom function F

0.
Game (3, j): informally, for j = 0, . . . , Q�, Game (3, j) is a modification of Game 2 in which

the queries (�, ⌧), where � is among the first j distinct values �1, . . . ,�j queried by A, are
answered with randomly chosen outputs. More formally, let Q� be the number of distinct �’s
queried by the adversary A during the experiment. If S = {�1, . . . ,�Q�} is the ordered set of
all such values queried by A, then, for 0  j  Q�, we define the following partitioning sets of

6 Lewko and Waters [37] state this Lemma for the k-Linear problem. We only recall the version for k = 2.

20

the CF13 homomorphic MAC

�20

eval(f, σ1, ..., σk)

α0

σ1
σ2

σ3

f
 + - x

α0

σ*

point-wise execution of arithmetic operations 
 σ*(Z) = f(σ1(Z), ..., σk(Z))

addition: addition of coefficients
multiplication: convolution of polynomials

correctness:
σ*(0) =f(σ1(0), ..., σk(0))  
 =f(x1, ..., xk)

σ*(α) =f(σ1(α), ..., σk(α))  
 =f(PRFK(1), ...,PRFK(k))

“guard”

result

ver(sk, f, y, σ*)
Check
σ*(α) = f(PRFK(1), ...,PRFK(k))  
σ*(0) =y

unforgeability.
intuition: unpredictability of the guard point
a bit more precisely:  
 PRF security + Schwartz-Zippel

succinctness. |σ*|=O(deg(f))
or |σ*|=O(1) under deg(f)-DH assumption

HAs with efficient verification
CF13 verification requires recomputing f
how to verify efficiently?
[BFR13] introduced the model and a first realization

basic idea.
ver(vk, f, y, σ)

veroff(vk, f)→vkf veron(vkf, y, σ)→{reject, accept}

this is by now a desired verification model (also in homomorphic
signatures)

�21

roadmap of this talk
computing on untrusted machines

focus on computation authenticity

homomorphic authentication

concept

state of the art

a simple realization

computation authenticity for multiple data sources

conclusions

�22

computation authenticity for multiple users

�23

x1, …, xn y

y=f(x1, …, xn)Alice Bob

what if we have multiple users providing data?

x2 y

y=f(x1, …, xn) Bob

Alice x1

xn

Cathy

Mary

using (single-user) HAs

�24

x1, …, xn y

y=f(x1, …, xn)Alice Bob

x2 y

y=f(x1, …, xn) Bob

Alice

Cathy

Mary

x1

xn

vksk

=eval(pk, f, , …,)

ver(vk, f, y,)

sk

sk

sk

=eval(pk, f, , …,)

a trivial solution
vk

ver(vk, f, y,)

main issues.
establishing origin. not really… all users look the same

fault tolerance. if one users is compromised all system is compromised!

using (single-user) HAs

�25

x2 y

y=f(x1, …, xn) Bob

Alice x1

xn

sk

sk

sk

=eval(pk, f, , …,)

a trivial solution
vk

ver(vk, f, y,)
Cathy

Mary

multi-key homomorphic authenticators

�26

x2 y

y=f(x1, …, xn) Bob

Alice

Cathy

Mary

x1

xn

sk1

sk2

sk3

=eval(pk, f, , …,)

vk=(vk1, …, vkn)

ver(vk, f, y,)

key property. can certify computations on data authenticated
with different secret keys

unforgeability. untrusted machine cannot cheat (unless it learns
some ski involved in the computation)

succinctness. size of σ independent of #inputs (but may depend
on #users)

[F-Mitrokotsa-Nizzardo-Pagnin16]

multi-key homomorphic authenticators (MK-HA)

setup(1k)→pp

keygen(pp)→(skid, ekid, vkid)

auth(skid, (id, i), x)→σid,i

eval(f, {σi, EKSi}i=1..n)→σ // each EKSi = {ekid}

ver(f, {vkid}, y, σ)→{reject, accept}

correctness (basic idea).
{σj←auth(skidj, (idj, ij), xj)} and σ←eval(f, {σj, {ekidj}}j=1..n),

⇒ ver(f, {vkid}, f(x1,…,xn), σ)=accept

succinctness. there is a universal polynomial p(k) such that |σ|≤p(k, n, log t)

security. w/o sk of users involved in a computation, one can only create valid
authenticators on legitimate outputs

�27

+ x x

++

x1 x2 x3

x

(id1,1) (id1,2)(id2,1)

a look at multi-key HAs state of the art

multi-key HA w/better succinctness from std assumptions? [OP-5]

�28

[F-Mitrokotsa-Nizzardo-Pagnin16]

MK-HS MK-HMAC MK-HS* 
*stronger security

functions arbitrary circuits of
bounded depth

arithmetic circuits of
“low degree”

arbitrary circuits of
bounded depth

assumptions SIS PRF (OWFs) SNARKs

succinctness
(n=#users, d=deg(f))

O(n) O(nd) or O(dn) O(1)

[Lai et al. 18]

?

FMNP16 multi-key homomorphic MAC

�29

keygen() at user j
choose the key Kj of a PRFKj  
and a secret line αj 
skj=(Kj, αj)

σi

αj

xi

auth(skj, i, xi)
Encode value xi (an integer)  
with label/index i  
as a polynomial σi(Zj)
of degree 1 such that:

PRFKj(i)

0

ver(skj, i, xi, σi)
Check the “guard” point
i.e., recompute PRFKj(i) and
evaluate σi on 0 and αj

“guard” point

“value” point

Definition 4 (Decision Linear [13]). Let G be a bilinear group generator, and let bgpp = (p,G,

GT , e, g) R G(1�). Let g0, g1, g2 R G, and r0, r1, r2 R Zp be chosen uniformly at random. We
define the advantage of an adversary A in solving the Decision Linear problem as

Advdlin
A (�) = |Pr[A(bgpp, g0, g1, g2, g

r1
1
, g

r2
2
, g

r1+r2
0

) = 1]�
Pr[A(bgpp, g0, g1, g2, g

r1
1
, g

r2
2
, g

r0
0

) = 1] |

We say that the Decision Linear assumption holds for G if for every PPT algorithm A we have that
Advdlin

A (�) is negligible.

Also, in our proof we will use the following useful Lemma (Lemma 7 in [37]) which basically
shows that the Decision Linear problem is random self-reducible6:

Lemma 1 ([37]). Given g0, g1, g2, g
r1
1
, g

r2
2
, g

r0
0
2 G, one can generate g

r01
1
, g

r02
2
, g

r00
0

such that: (1)
r
0
1
, r

0
2
are uniformly random in Zp, and (2) r

0
0
= r

0
1
+ r

0
2
if r0 = r1 + r2, or r

0
0
is uniformly random

otherwise.

Our pseudorandom function. Here we describe our PRF with amortized closed-form e�ciency:

KG(1�). Let bgpp = (p,G,GT , e, g) be the description of bilinear groups G and GT having the same
prime order p > 2� and such that g 2 G is a generator and e : G ⇥ G ! GT is an e�ciently
computable bilinear map. The key generation chooses two seeds K1,K2 for a family of PRFs
F
0

K1,2
: {0, 1}⇤ ! Z2

p. Finally, it outputs K = (bgpp,K1,K2) and pp = bgpp. The parameters

define a function F with domain X = {0, 1}⇤ ⇥ {0, 1}⇤ and range G, as described below.
FK(x). Let x = (�, ⌧) 2 X be the input value. To compute the corresponding output R 2 G, the

algorithm generates values (u, v) F
0

K1
(⌧) and (a, b) F

0

K2
(�), and then outputs R = g

ua+vb.

We first show that the above function is pseudorandom, and then we will show that it admits
amortized closed-form e�ciency for GroupEval.

Theorem 2. If F0 is a pseudorandom function and the Decision Linear assumption holds for G,
then the function (KG,F) described above is a pseudorandom function.

Proof. The proof follows by a standard hybrid argument based on the following games.

Game 0: this is the pseudorandomness game for the function F.
Game 1: this is Game 0 where the function F

0

K1
is replaced by a random function �1 : {0, 1}⇤ ! Z2

p.
It is easy to see that Game 1 is computationally indistinguishable from Game 0 by the security
of the pseudorandom function F

0.
Game 2: this is Game 1 where the function F

0

K2
is replaced by a random function �2 : {0, 1}⇤ ! Z2

p.
Similarly to the previous case, one can easily argue that Game 2 is computationally indistin-
guishable from Game 1 by the security of the pseudorandom function F

0.
Game (3, j): informally, for j = 0, . . . , Q�, Game (3, j) is a modification of Game 2 in which

the queries (�, ⌧), where � is among the first j distinct values �1, . . . ,�j queried by A, are
answered with randomly chosen outputs. More formally, let Q� be the number of distinct �’s
queried by the adversary A during the experiment. If S = {�1, . . . ,�Q�} is the ordered set of
all such values queried by A, then, for 0  j  Q�, we define the following partitioning sets of

6 Lewko and Waters [37] state this Lemma for the k-Linear problem. We only recall the version for k = 2.

20

σi (0) = xi

σi (αj) = PRFKj(i)

σi,0 = xi , σi,1 =(PRFKj(i) - xi)/αj

FMNP16 multi-key homomorphic MAC

�30

eval(f, σ1, ..., σk)
multivariate polynomial evaluation

σ*(Z) = f(σ1(Z), ..., σt(Z))
Z=Z1,…,Zn

correctness:
σ*(0,…, 0) =f(σ1(0), ..., σt(0))  
 =f(x1, ..., xt)

σ*(α1,…,αn) =f(σ1(α1), ..., σt(αt))  
 =f(PRFK1(1), …,PRFKt(t))

“guard”

result

ver(sk, f, y, σ*)
Check
σ*(α1,…,αn) = f(PRFK1(1), …,PRFKt(t))  
σ*(0,…, 0) = y

unforgeability.
intuition: unpredictability of the guard point
(more precisely: PRF + Schwartz-Zippel)

succinctness. |σ*|= = O(nd) or O(dn)  
 d = deg(f)

f
 + - x

0 α1

α2

α1∩α2

σ*

0

σ1

σ2

σ3

α1

α2

idea: one plane per user

✓
n+ d

d

◆

hypersurface

roadmap of this talk
computing on untrusted machines

focus on computation authenticity

homomorphic authentication

concept

state of the art

a simple realization

computation authenticity for multiple data sources

conclusions

�31

Alternative
Approaches…

computation authenticity via SNARKs

a folklore idea: using SNARKs + digital signatures
proves that R(y, {xi,σi})=1 iff y=f(x) AND ∀i σi is a valid signature on (i, xi)

SNARK succinctness => HS succinctness

knowledge-soundness + unforgeability => HS unforgeability

…but proving security raises very subtle problems related to extractability

�33

x1, …, xn y

y=f(x1, …, xn)Alice Bob
=prove(R, y, {x1, σi}i)

σ1, …, σn

computation authenticity via CP-SNARKs

using commit-and-prove SNARKs + digital signatures
can create proof that y=f(x) w.r.t. C=Com(x) + add signature on commitment C

Bob verifies that (C,) is valid signature and that (C, y,) valid proof

�34

x1, …, xn C, y

y=f(x1, …, xn)Alice Bob

C=Com(x1, …, xn)

=prove(f, x1, …, xn)

“Standard” HA constructions vs. alternative approaches

�35

HA SNARKs +
Signatures

CP-SNARKs +
Signatures

efficiency
(concrete)

good for linear/
quadratic functions

assumptions standard (oracle)  
knowledge-type knowledge-type

public
parameters

O(1) (ROM)  
O(#inputs) (std model)

O(1) ROM
O(|f|) **

O(1) ROM
O(|f|) **

composition yes no* no*

streaming
source yes no yes

conclusions

�36

computing securely on untrusted machines with homomorphic authentication

simple homomorphic MACs  
 from OWFs

state of the art open problems
[OP-1] fully homomorphic signatures
[OP-2] fast&expressive HS
[OP-3] efficient fully homomorphic MACs
[OP-4] fully homomorphic MACs w/ver. queries
[OP-5] fully-succinct multi-key HA

fast

slow
linear arbitrary

(bounded size)
polynomials

efficiency

class of  
functionsarbitrary 

(unbounded)

?

??

α0

σ1
σ2

σ3

f
 + - x

α0

σ*

x y

y=f(x)

my exciting journey on homomorphic authentication

— Thank you for your attention!

�37

thanks and credit to all my collaborators too!

M. Backes, M. Barbosa, D. Catalano, R. Gennaro, K. Mitrokotsa, L. Nizzardo, E. Pagnin,
V. Pastro, R. Reischuk, B. Warinschi

